Updated: 2022/Sep/29

Please read Privacy Policy. It's for your privacy.


EVP_RAND(3)                         OpenSSL                        EVP_RAND(3)



NAME
       EVP_RAND, EVP_RAND_fetch, EVP_RAND_free, EVP_RAND_up_ref, EVP_RAND_CTX,
       EVP_RAND_CTX_new, EVP_RAND_CTX_free, EVP_RAND_instantiate,
       EVP_RAND_uninstantiate, EVP_RAND_generate, EVP_RAND_reseed,
       EVP_RAND_nonce, EVP_RAND_enable_locking, EVP_RAND_verify_zeroization,
       EVP_RAND_get_strength, EVP_RAND_get_state, EVP_RAND_get0_provider,
       EVP_RAND_CTX_get0_rand, EVP_RAND_is_a, EVP_RAND_get0_name,
       EVP_RAND_names_do_all, EVP_RAND_get0_description,
       EVP_RAND_CTX_get_params, EVP_RAND_CTX_set_params,
       EVP_RAND_do_all_provided, EVP_RAND_get_params,
       EVP_RAND_gettable_ctx_params, EVP_RAND_settable_ctx_params,
       EVP_RAND_CTX_gettable_params, EVP_RAND_CTX_settable_params,
       EVP_RAND_gettable_params, EVP_RAND_STATE_UNINITIALISED,
       EVP_RAND_STATE_READY, EVP_RAND_STATE_ERROR - EVP RAND routines

LIBRARY
       libcrypto, -lcrypto

SYNOPSIS
        #include <openssl/evp.h>

        typedef struct evp_rand_st EVP_RAND;
        typedef struct evp_rand_ctx_st EVP_RAND_CTX;

        EVP_RAND *EVP_RAND_fetch(OSSL_LIB_CTX *libctx, const char *algorithm,
                               const char *properties);
        int EVP_RAND_up_ref(EVP_RAND *rand);
        void EVP_RAND_free(EVP_RAND *rand);
        EVP_RAND_CTX *EVP_RAND_CTX_new(EVP_RAND *rand, EVP_RAND_CTX *parent);
        void EVP_RAND_CTX_free(EVP_RAND_CTX *ctx);
        EVP_RAND *EVP_RAND_CTX_get0_rand(EVP_RAND_CTX *ctx);
        int EVP_RAND_get_params(EVP_RAND *rand, OSSL_PARAM params[]);
        int EVP_RAND_CTX_get_params(EVP_RAND_CTX *ctx, OSSL_PARAM params[]);
        int EVP_RAND_CTX_set_params(EVP_RAND_CTX *ctx, const OSSL_PARAM params[]);
        const OSSL_PARAM *EVP_RAND_gettable_params(const EVP_RAND *rand);
        const OSSL_PARAM *EVP_RAND_gettable_ctx_params(const EVP_RAND *rand);
        const OSSL_PARAM *EVP_RAND_settable_ctx_params(const EVP_RAND *rand);
        const OSSL_PARAM *EVP_RAND_CTX_gettable_params(EVP_RAND_CTX *ctx);
        const OSSL_PARAM *EVP_RAND_CTX_settable_params(EVP_RAND_CTX *ctx);
        const char *EVP_RAND_get0_name(const EVP_RAND *rand);
        const char *EVP_RAND_get0_description(const EVP_RAND *rand);
        int EVP_RAND_is_a(const EVP_RAND *rand, const char *name);
        const OSSL_PROVIDER *EVP_RAND_get0_provider(const EVP_RAND *rand);
        void EVP_RAND_do_all_provided(OSSL_LIB_CTX *libctx,
                                      void (*fn)(EVP_RAND *rand, void *arg),
                                      void *arg);
        int EVP_RAND_names_do_all(const EVP_RAND *rand,
                                  void (*fn)(const char *name, void *data),
                                  void *data);

        int EVP_RAND_instantiate(EVP_RAND_CTX *ctx, unsigned int strength,
                                 int prediction_resistance,
                                 const unsigned char *pstr, size_t pstr_len,
                                 const OSSL_PARAM params[]);
        int EVP_RAND_uninstantiate(EVP_RAND_CTX *ctx);
        int EVP_RAND_generate(EVP_RAND_CTX *ctx, unsigned char *out, size_t outlen,
                              unsigned int strength, int prediction_resistance,
                              const unsigned char *addin, size_t addin_len);
        int EVP_RAND_reseed(EVP_RAND_CTX *ctx, int prediction_resistance,
                            const unsigned char *ent, size_t ent_len,
                            const unsigned char *addin, size_t addin_len);
        int EVP_RAND_nonce(EVP_RAND_CTX *ctx, unsigned char *out, size_t outlen);
        int EVP_RAND_enable_locking(EVP_RAND_CTX *ctx);
        int EVP_RAND_verify_zeroization(EVP_RAND_CTX *ctx);
        unsigned int EVP_RAND_get_strength(EVP_RAND_CTX *ctx);
        int EVP_RAND_get_state(EVP_RAND_CTX *ctx);

        #define EVP_RAND_STATE_UNINITIALISED    0
        #define EVP_RAND_STATE_READY            1
        #define EVP_RAND_STATE_ERROR            2

DESCRIPTION
       The EVP RAND routines are a high-level interface to random number
       generators both deterministic and not.  If you just want to generate
       random bytes then you don't need to use these functions: just call
       RAND_bytes() or RAND_priv_bytes().  If you want to do more, these calls
       should be used instead of the older RAND and RAND_DRBG functions.

       After creating a EVP_RAND_CTX for the required algorithm using
       EVP_RAND_CTX_new(), inputs to the algorithm are supplied either by
       passing them as part of the EVP_RAND_instantiate() call or using calls
       to EVP_RAND_CTX_set_params() before calling EVP_RAND_instantiate().
       Finally, call EVP_RAND_generate() to produce cryptographically secure
       random bytes.

   Types
       EVP_RAND is a type that holds the implementation of a RAND.

       EVP_RAND_CTX is a context type that holds the algorithm inputs.
       EVP_RAND_CTX structures are reference counted.

   Algorithm implementation fetching
       EVP_RAND_fetch() fetches an implementation of a RAND algorithm, given a
       library context libctx and a set of properties.  See "ALGORITHM
       FETCHING" in crypto(7) for further information.

       The returned value must eventually be freed with EVP_RAND_free(3).

       EVP_RAND_up_ref() increments the reference count of an already fetched
       RAND.

       EVP_RAND_free() frees a fetched algorithm.  NULL is a valid parameter,
       for which this function is a no-op.

   Context manipulation functions
       EVP_RAND_CTX_new() creates a new context for the RAND implementation
       rand.  If not NULL, parent specifies the seed source for this
       implementation.  Not all random number generators need to have a seed
       source specified.  If a parent is required, a NULL parent will utilise
       the operating system entropy sources.  It is recommended to minimise
       the number of random number generators that rely on the operating
       system for their randomness because this is often scarce.

       EVP_RAND_CTX_free() frees up the context ctx.  If ctx is NULL, nothing
       is done.

       EVP_RAND_CTX_get0_rand() returns the EVP_RAND associated with the
       context ctx.

   Random Number Generator Functions
       EVP_RAND_instantiate() processes any parameters in params and then
       instantiates the RAND ctx with a minimum security strength of
       <strength> and personalisation string pstr of length <pstr_len>.  If
       prediction_resistance is specified, fresh entropy from a live source
       will be sought.  This call operates as per NIST SP 800-90A and SP
       800-90C.

       EVP_RAND_uninstantiate() uninstantiates the RAND ctx as per NIST SP
       800-90A and SP 800-90C.  Subsequent to this call, the RAND cannot be
       used to generate bytes.  It can only be freed or instantiated again.

       EVP_RAND_generate() produces random bytes from the RAND ctx with the
       additional input addin of length addin_len.  The bytes produced will
       meet the security strength.  If prediction_resistance is specified,
       fresh entropy from a live source will be sought.  This call operates as
       per NIST SP 800-90A and SP 800-90C.

       EVP_RAND_reseed() reseeds the RAND with new entropy.  Entropy ent of
       length ent_len bytes can be supplied as can additional input addin of
       length addin_len bytes.  In the FIPS provider, both are treated as
       additional input as per NIST SP-800-90Ar1, Sections 9.1 and 9.2.
       Additional seed material is also drawn from the RAND's parent or the
       operating system.  If prediction_resistance is specified, fresh entropy
       from a live source will be sought.  This call operates as per NIST SP
       800-90A and SP 800-90C.

       EVP_RAND_nonce() creates a nonce in out of maximum length outlen bytes
       from the RAND ctx. The function returns the length of the generated
       nonce. If out is NULL, the length is still returned but no generation
       takes place. This allows a caller to dynamically allocate a buffer of
       the appropriate size.

       EVP_RAND_enable_locking() enables locking for the RAND ctx and all of
       its parents.  After this ctx will operate in a thread safe manner,
       albeit more slowly. This function is not itself thread safe if called
       with the same ctx from multiple threads. Typically locking should be
       enabled before a ctx is shared across multiple threads.

       EVP_RAND_get_params() retrieves details about the implementation rand.
       The set of parameters given with params determine exactly what
       parameters should be retrieved.  Note that a parameter that is unknown
       in the underlying context is simply ignored.

       EVP_RAND_CTX_get_params() retrieves chosen parameters, given the
       context ctx and its underlying context.  The set of parameters given
       with params determine exactly what parameters should be retrieved.
       Note that a parameter that is unknown in the underlying context is
       simply ignored.

       EVP_RAND_CTX_set_params() passes chosen parameters to the underlying
       context, given a context ctx.  The set of parameters given with params
       determine exactly what parameters are passed down.  Note that a
       parameter that is unknown in the underlying context is simply ignored.
       Also, what happens when a needed parameter isn't passed down is defined
       by the implementation.

       EVP_RAND_gettable_params() returns an OSSL_PARAM(3) array that
       describes the retrievable and settable parameters.
       EVP_RAND_gettable_params() returns parameters that can be used with
       EVP_RAND_get_params().

       EVP_RAND_gettable_ctx_params() and EVP_RAND_CTX_gettable_params()
       return constant OSSL_PARAM(3) arrays that describe the retrievable
       parameters that can be used with EVP_RAND_CTX_get_params().
       EVP_RAND_gettable_ctx_params() returns the parameters that can be
       retrieved from the algorithm, whereas EVP_RAND_CTX_gettable_params()
       returns the parameters that can be retrieved in the context's current
       state.

       EVP_RAND_settable_ctx_params() and EVP_RAND_CTX_settable_params()
       return constant OSSL_PARAM(3) arrays that describe the settable
       parameters that can be used with EVP_RAND_CTX_set_params().
       EVP_RAND_settable_ctx_params() returns the parameters that can be
       retrieved from the algorithm, whereas EVP_RAND_CTX_settable_params()
       returns the parameters that can be retrieved in the context's current
       state.

   Information functions
       EVP_RAND_get_strength() returns the security strength of the RAND ctx.

       EVP_RAND_get_state() returns the current state of the RAND ctx.  States
       defined by the OpenSSL RNGs are:

       ⊕   EVP_RAND_STATE_UNINITIALISED: this RNG is currently uninitialised.
           The instantiate call will change this to the ready state.

       ⊕   EVP_RAND_STATE_READY: this RNG is currently ready to generate
           output.

       ⊕   EVP_RAND_STATE_ERROR: this RNG is in an error state.

       EVP_RAND_is_a() returns 1 if rand is an implementation of an algorithm
       that's identifiable with name, otherwise 0.

       EVP_RAND_get0_provider() returns the provider that holds the
       implementation of the given rand.

       EVP_RAND_do_all_provided() traverses all RAND implemented by all
       activated providers in the given library context libctx, and for each
       of the implementations, calls the given function fn with the
       implementation method and the given arg as argument.

       EVP_RAND_get0_name() returns the canonical name of rand.

       EVP_RAND_names_do_all() traverses all names for rand, and calls fn with
       each name and data.

       EVP_RAND_get0_description() returns a description of the rand, meant
       for display and human consumption.  The description is at the
       discretion of the rand implementation.

       EVP_RAND_verify_zeroization() confirms if the internal DRBG state is
       currently zeroed.  This is used by the FIPS provider to support the
       mandatory self tests.

PARAMETERS
       The standard parameter names are:

       "state" (OSSL_RAND_PARAM_STATE) <integer>
           Returns the state of the random number generator.

       "strength" (OSSL_RAND_PARAM_STRENGTH) <unsigned integer>
           Returns the bit strength of the random number generator.

       For rands that are also deterministic random bit generators (DRBGs),
       these additional parameters are recognised. Not all parameters are
       relevant to, or are understood by all DRBG rands:

       "reseed_requests" (OSSL_DRBG_PARAM_RESEED_REQUESTS) <unsigned integer>
           Reads or set the number of generate requests before reseeding the
           associated RAND ctx.

       "reseed_time_interval" (OSSL_DRBG_PARAM_RESEED_TIME_INTERVAL) <integer>
           Reads or set the number of elapsed seconds before reseeding the
           associated RAND ctx.

       "max_request" (OSSL_DRBG_PARAM_RESEED_REQUESTS) <unsigned integer>
           Specifies the maximum number of bytes that can be generated in a
           single call to OSSL_FUNC_rand_generate.

       "min_entropylen" (OSSL_DRBG_PARAM_MIN_ENTROPYLEN) <unsigned integer>
       "max_entropylen" (OSSL_DRBG_PARAM_MAX_ENTROPYLEN) <unsigned integer>
           Specify the minimum and maximum number of bytes of random material
           that can be used to seed the DRBG.

       "min_noncelen" (OSSL_DRBG_PARAM_MIN_NONCELEN) <unsigned integer>
       "max_noncelen" (OSSL_DRBG_PARAM_MAX_NONCELEN) <unsigned integer>
           Specify the minimum and maximum number of bytes of nonce that can
           be used to seed the DRBG.

       "max_perslen" (OSSL_DRBG_PARAM_MAX_PERSLEN) <unsigned integer>
       "max_adinlen" (OSSL_DRBG_PARAM_MAX_ADINLEN) <unsigned integer>
           Specify the minimum and maximum number of bytes of personalisation
           string that can be used with the DRBG.

       "reseed_counter" (OSSL_DRBG_PARAM_RESEED_COUNTER) <unsigned integer>
           Specifies the number of times the DRBG has been seeded or reseeded.

       "properties" (OSSL_RAND_PARAM_PROPERTIES) <UTF8 string>
       "mac" (OSSL_RAND_PARAM_MAC) <UTF8 string>
       "digest" (OSSL_RAND_PARAM_DIGEST) <UTF8 string>
       "cipher" (OSSL_RAND_PARAM_CIPHER) <UTF8 string>
           For RAND implementations that use an underlying computation MAC,
           digest or cipher, these parameters set what the algorithm should
           be.

           The value is always the name of the intended algorithm, or the
           properties in the case of OSSL_RAND_PARAM_PROPERTIES.

NOTES
       The use of a nonzero value for the prediction_resistance argument to
       EVP_RAND_instantiate(), EVP_RAND_generate() or EVP_RAND_reseed() should
       be used sparingly.  In the default setup, this will cause all public
       and private DRBGs to be reseeded on next use.  Since, by default,
       public and private DRBGs are allocated on a per thread basis, this can
       result in significant overhead for highly multi-threaded applications.
       For normal use-cases, the default "reseed_requests" and
       "reseed_time_interval" thresholds ensure sufficient prediction
       resistance over time and you can reduce those values if you think they
       are too high.  Explicitly requesting prediction resistance is intended
       for more special use-cases like generating long-term secrets.

       An EVP_RAND_CTX needs to have locking enabled if it acts as the parent
       of more than one child and the children can be accessed concurrently.
       This must be done by explicitly calling EVP_RAND_enable_locking().

       The RAND life-cycle is described in life_cycle-rand(7).  In the future,
       the transitions described there will be enforced.  When this is done,
       it will not be considered a breaking change to the API.

RETURN VALUES
       EVP_RAND_fetch() returns a pointer to a newly fetched EVP_RAND, or NULL
       if allocation failed.

       EVP_RAND_get0_provider() returns a pointer to the provider for the
       RAND, or NULL on error.

       EVP_RAND_CTX_get0_rand() returns a pointer to the EVP_RAND associated
       with the context.

       EVP_RAND_get0_name() returns the name of the random number generation
       algorithm.

       EVP_RAND_up_ref() returns 1 on success, 0 on error.

       EVP_RAND_names_do_all() returns 1 if the callback was called for all
       names. A return value of 0 means that the callback was not called for
       any names.

       EVP_RAND_CTX_new() returns either the newly allocated EVP_RAND_CTX
       structure or NULL if an error occurred.

       EVP_RAND_CTX_free() does not return a value.

       EVP_RAND_nonce() returns the length of the nonce.

       EVP_RAND_get_strength() returns the strength of the random number
       generator in bits.

       EVP_RAND_gettable_params(), EVP_RAND_gettable_ctx_params() and
       EVP_RAND_settable_ctx_params() return an array of OSSL_PARAMs.

       EVP_RAND_verify_zeroization() returns 1 if the internal DRBG state is
       currently zeroed, and 0 if not.

       The remaining functions return 1 for success and 0 or a negative value
       for failure.

SEE ALSO
       RAND_bytes(3), EVP_RAND-CTR-DRBG(7), EVP_RAND-HASH-DRBG(7),
       EVP_RAND-HMAC-DRBG(7), EVP_RAND-TEST-RAND(7), provider-rand(7),
       life_cycle-rand(7)

HISTORY
       This functionality was added to OpenSSL 3.0.

COPYRIGHT
       Copyright 2020-2023 The OpenSSL Project Authors. All Rights Reserved.

       Licensed under the Apache License 2.0 (the "License").  You may not use
       this file except in compliance with the License.  You can obtain a copy
       in the file LICENSE in the source distribution or at
       <https://www.openssl.org/source/license.html>.



3.0.12                            2023-05-31                       EVP_RAND(3)